
FUEL/QOPQDP
replacement

drhgfdjhngngfmhgmghmghjmghfmf

James C. Osborn & Xiao-Yong Jin

ALCF

USQCD Software call
Jan. 21, 2016

2

FUEL/QOPQDP

● QOPQDP (and QDP/QLA)

– Started in 2001

– Well optimized for few-core, short-vector machines

– Somewhat complicated set of Perl code generators creating large libraries

● FUEL

– Wraps QOPQDP/QDP in high level scripting language (Lua)

– Very convenient for writing new code, experimenting with algorithms, etc.

– Loose efficiency and flexibility of writing to lower level

● Needs significant overhaul to make efficient use of future architectures
while keeping high level, easy to use, scripting (-like) interface

3

FUEL/QOPQDP redesign initial plans

● Make flexible code generator

– Write high-level expressions

– Generate efficient low-level C code

– Could make similar high-level interface available
at compile-time and run-time

● Wanted true code-generator

– Full control over generated code and high level constructs

– Able to analyze, transform and generate code in a natural,
powerful, high-level language

– C++ templates are Turing-complete (technically have full control),
but not at all natural or high-level

● Initially considering constructing code generator in Lua
for lack of a better alternative, until I discovered...

4

Nim (nim-lang.org)

● Modern language started in 2008

● Designed to be “efficient, expressive, and elegant”

● Borrows heavily from: Modula 3, Delphi, Ada, C++, Python, Lisp, Oberon

● Statically typed, but has extensive type-inference, so feels like
dynamically-typed scripting language

● Efficient garbage collection (optional)

● Extensive meta-programming support (nearly full language
available at compile time)

● Final output is C or C++ (or JS) code

– GPU (OpenCL) on roadmap, but probably long ways off

● LLVM-IR backend recently contributed (still in development)

5

Nim (nim-lang.org)

● Easily interfaces with existing C/C++ code

● Allows inserting C/C++ code directly in output

● Openly available on github (MIT license)

● Started by single person (Andreas Rumpf) who is main developer

● 10 contributors with 50+ commits in past year, 79 total in past year

● Active forum on website with very knowledgeable contributors

● Under active development

– Current version 0.13 (Jan. 18)

– Language still evolving, but mostly stable

– Many open issues (646), most minor, but several (22) high priority

● A few small companies using it (game, web)

6

Generic and meta-programming features

C++ Nim

preprocessor
macros

templates:
inline code substitutions
also allows overloading, completely hygenic (if desired)

templates generics:
applies to type definitions, procedures, templates and macros
also allows typeclasses, concepts

??? macros:
similar to lisp: syntax tree of arguments passed to macro at
compile time to allow arbitrary manipulation

7

New lattice framework

● Writing new lattice expression framework in Nim

● Using recently developed QLL for layout/communications framework

– Staggered CG ~23% on BG/Q

● Can get hand-written Nim code to nearly match performance
of hand-written C code

● Working on generating efficient code from expressions
(much easier on x86 since compilers are newer)

● Have done many tests to understand language and capabilities

● Just recently started putting pieces together into coherent package

● Trying to get simple examples up and running to get it usable

● Will focus on adding features, optimization and refining syntax as we go

8

QEX: QCD (or Quantum) Expressions

import qex
import qcdTypes

qexInit()
var lat = [4,4,4,4]
var lo = newLayout(lat)
var v1 = lo.ColorVector()
var v2 = lo.ColorVector()
var m1 = lo.ColorMatrix()
threads:
 m1 := 1
 v1 := 2
 v2 := m1 * v1
 shift(v1, dir=3, len=1, v2) # len=+1: from forward
 single:
 if myRank==0:
 echo v2[0][0] # vector “site” 0, color 0
qexFinalize()

9

QEX/Nim examples

● threads: implementation

template threads*(body:untyped):untyped =
 let tidOld = tid
 let nidOld = nid
 proc tproc =
 {.emit:"#pragma omp parallel".}
 block:
 setupForeignThreadGc()
 tid = ompGetThreadNum()
 nid = ompGetNumThreads()
 body
 tproc()
 tid = tidOld
 nid = nidOld

10

QEX/Nim examples

var v3 = lo.ColorVector()
template S0(x:v3.type):expr =
 shift(v3, dir=0, len=1, x)
 v3

threads:
 for s in v1.all:
 var aa:array[VLEN,float32]
 for i in 0..<VLEN:
 aa[i] = (((x[0][i]*10+x[1][i])*10+x[2][i])
 *10+x[3][i]).float32
 v1[s][0].re := aa

 v2 := m1 * v1.S0

11

QEX tensors

● General site-wise tensor support in development:

type
 Color = range[1..3]
 Spin = range[1..4]
 HalfSpin = range[1..2]
 CVec = nameTensor(complex, Color)
 SCVec = nameTensor(complex, Spin, Color)
 CMat = nameTensor(complex, Color, Color)
 SCMat = nameTensor(complex, Spin, Spin, Color, Color)
var
 d1,d2: SCVec
 p1: SCMat

d1[s,c] <- (if s==1 and c==1: 1.0 else: 0.0)
d2[mu,a] <- p1[mu,nu,a,b] * d1[nu,b]
t <- p1[mu,mu,a,a]

12

QEX/Nim configuration & compilation

● Nim automatically keeps track of dependencies (import's) and will compile and link all sources
needed to produce executable, no Makefile necessary!

nim c myProject1.nim
nim c myproject2.nim
…

● Setup configuration file:
 cc = gcc
 gcc.exe = mpicc
 gcc.linkerexe = mpicc
 gcc.options.always = "-Wall -std=gnu99"
 gcc.options.speed = "-O3 -march=native"
 gcc.options.debug = "-g3 -O0"

● C wrappers can automatically include headers/libraries; example from qmp.nim:
 when not defined(qmpDir):
 const homeDir = getHomeDir()
 const qmpDir = homeDir & "lqcd/install/qmp"
 {. passC: "-I" & qmpDir & "/include" .}
 {. passL: "-L" & qmpDir & "/lib -lqmp" .}
 {. pragma: qmp, importc, header:"qmp.h" .}
 proc QMP_get_node_number*():cint {.qmp.}

13

QEX/Nim scripting

● Having scripting interface to application provides:

– Flexible, procedural, interface to set up parameters

– Avoids recompiling for simple changes in workflow or need
to maintain Makefiles for new codes

– Enables rapid testing and development by providing
high level interface to routines

● Nim provides most of this, except for the actual compiling
(so far compile times are < few seconds)

● Could plug in Lua

● Nim provides its own scripting interface (Nimscript)

– Used in compiler for compile-time evaluation

– Available to plug in to application and can interface with rest of application

14

QEX plans

● Short term

– Finish shifts, parallel transport functions

– Add I/O (QIO)

– Integrate site-wise tensor expressions

– At this point it should be usable and reasonably efficient for most
applications

– Add ability to explicitly create CUDA kernels

● Longer term

– Implement optimized field-wise expressions including shifts

– Make CUDA code generation automatic from threads: region

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

